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Learning in the hypercube: A stepping stone to the binary perceptron

M. Bouten, L. Reimers, and B. Van Rompaey
Limburgs Universitair Centrum, B-3590 Diepenbeek, Belgium

~Received 30 January 1998!

The learning problem for storing random patterns in a perceptron with binary weights can be facilitated by
pretraining an appropriate precursor network with continuous weights. Unlike previous studies which compare
the performance of different continuous-weight perceptrons on the hypersphere~spherical constraint!, we also
consider weight vectors constrained to the volume of the hypercube~cubical constraint!. We compare the
performance of the maximally stable networks on the hypersphere and in the hypercube, and show that the
latter is superior for predicting the weights of the maximally stable binary perceptron. We further determine an
upper bound for the fraction of binary weights that any precursor is able to predict correctly, and introduce a
precursor in the hypercube that closely approaches this upper bound. We finally demonstrate the value of this
hypercube precursor by carrying out simulations for a perceptron with up to 100 weights.
@S1063-651X~98!12808-8#

PACS number~s!: 87.10.1e, 64.60.Cn
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I. INTRODUCTION

In a recent paper@1#, we introduced a learning strategy fo
the binary perceptron. It is based on previous work by P
ney and Sherrington@2# which showed that a strong correla
tion exists between the signs of the synaptic weights of
continuous-weight perceptron of maximum stability~MSN!
and those of the binary-weight perceptron of maximum s
bility ~MSB!. Since excellent algorithms@3,4# exist for de-
termining the MSN weights, it is natural to try exploiting th
correlation to collect valuable information about the MS
weights.

A first, albeit rather poor approximation of the MS
weight vector can be obtained by clipping all MSN weigh
Penney and Sherrington@2# calculated that, near the satur
tion limit a50.83, about 20% of these clipped weights diff
in sign from the corresponding components of the M
weight vector. To improve on the clipped weights, it is ne
essary to identify some of the incorrect components. On
basis of numerical experiments for small systems, Pen
and Sherrington suggested that the components of the M
likely to give a wrong prediction by weight clipping, are t
be found predominantly among the weakest MSN com
nents. We have demonstrated@1# that this suggestion is in
deed correct by focusing on the MSN weights that excee
threshold value, and calculating the probability that they p
dict the correct sign for the MSB. Our result indicates th
few errors will be generated by clipping the strongest 4
components of the MSN. However, the prediction, of t
remaining MSB weights by clipping the weaker compone
of the MSN becomes increasingly more dubious. An ad
tional learning stage therefore is necessary to determine t
weights. Numerical simulations@1# for a perceptron with 50
input neurons confirm that such a two-stage learning pro
dure yields satisfactory agreement with theoretical expe
tions.

Although the MSN would seem like the obviou
continuous-weight perceptron for serving as a precursor
the MSB—since both strive to maximize the stability—
turns out that the MSN is not the optimal choice. We ha
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determined@1# the optimal continuous-weight perceptro
that, on weight clipping, predicts the largest number of
nary weights for the MSB correctly. We have, in additio
presented a simple cost function for use in numerical ca
lations that produces an excellent approximation to these
timal precursor weights.

In the present paper, we want to show how a significan
better continuous-weight precursor for the MSB can be c
structed. To describe this precursor clearly, we first introd
our notation. As usual, we callN the number of input neu-
rons of the perceptron, andp5aN the number of input vec-
torsjm (m51, . . . ,p). TheseN-dimensional vectors are ran
domly chosen on the hyperspherej•j5N. Without loss of
generality, we can assume that all outputs are11. The N
weights of the binary perceptron are described by the we
vector B with componentsBiP$21,11%, (i 51, . . . ,N),
while those of the continuous precursor perceptron are
scribed by the weight vectorJ with componentsJiPR,
( i 51, . . . ,N). For the latter it is usual to impose the sphe
cal constraintJ25N. The input vectorsjm generate the fields
Lm5B•jm/AN in the binary perceptron, andlm5J•jm/AN
in the continuous perceptron. Learning the MSB involv
finding the vectorB, such thatLm>Kb (m51, . . . ,p) with
the largest possible value of the stabilityKb . Similarly for
the MSN, learning means finding the vectorJ such thatlm
>K (m51,...,p) with the largest possible value of the st
bility K. More general learning rules for the continuous p
ceptron are usually formulated as an optimization probl
@5–7#. Learning then consists of finding the vectorJ that
minimizes a cost function of the general formE(J)
5(mV(lm). The optimal continuous precursor weight ve
tor referred to above corresponds to the optimal choice of
‘‘potential’’ V(l) @1#.

To construct an even better continuous precursor, one
ther has to modify the form ofE(J) or give up the spherica
constraint. Perez Vicente, Carrabina, and Valderrana@8# used
a modified cost function, containing a term( i(Ji

221)2

which shifts the minimum towards the binary vectors. U
fortunately, this new term also creates a huge numbe
2378 © 1998 The American Physical Society
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PRE 58 2379LEARNING IN THE HYPERCUBE: A STEPPING . . .
local minima in which the minimization becomes trappe
We keep the cost function unchanged, but replace
‘‘spherical’’ constraintJ25N by the ‘‘cubical’’ constraint
uJi u<1 (i 51, . . . ,N). The geometrical terminology is evi
dent: the weight space in which learning has to proc
changes from the surface of a hypersphere to the volum
an inscribed hypercube. Two features of the hypercube m
it attractive as a weight space for constructing a precursor
the MSB. Unlike the hypersphere, which has lost all info
mation about the directions of the binary vectors, the hyp
cube retains a clear memory of them: they are the direct
pointing toward the corners of the cube. Moreover, sin
these vectors are the longest vectors in the hypercube,
have an edge over the other vectors for generating large
ues of the fieldslm . This is nicely illustrated for the simple
potentialV(l)52l, for which minimization in the hyper-
cube directly leads to the clipped Hebb vector while minim
zation on the hypersphere yields the standard Hebb ve
Similarly, for more general potentials, as when we search
the maximally stable vector in the hypercube~MSC!—
defined as the weight vectorJ with uJi u<1 (i 51, . . . ,N)
and satisfyinglm5J•jm/AN>Kc (m51, . . . ,p) with the
largest possible value of the stabilityKc—the binary vectors
have a competitive advantage and become favored ca
dates. It is therefore reasonable to expect that the maxim
stable vector in the hypercube will be a close neighbor of
MSB, closer than the maximally stable vector on the hyp
sphere. The second attractive feature of the hypercube i
convexity. If we want to use the MSC or any other learni
rule in the hypercube as a precursor for the MSB, clearl
reliable learning algorithm is required to construct the p
cursor weights in the first place. Since the hypercube
e
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convex set, any cost function of the formE(J)5(mV(lm)
with a convex potentialV(l) will have a unique minimum
which can easily be found by standard gradient descen
gorithms.

In Sec. II, we study the optimization problem of a gene
cost function in the hypercube. In Sec. III, we examine t
correlations between the weights of the MSB and those
different learning rules in the hypercube. More specifica
we calculate the probability that weight clipping produc
the correct MSB weights. In Sec. IV, we focus on the stro
components of the precursor, and demonstrate that they
a reliable prediction of the MSB weights. The quality of th
hypercube precursor is further tested in Sec. V by carry
out numerical simulations for a perceptron with up to 1
input units. In Sec. VI, we discuss our results and look ou
further improvements and applications of the hypercube p
cursor.

II. LEARNING IN THE HYPERCUBE

We consider an energy function of the for
E(J)5(mV(lm), and want to determine the minimum of th
energy in the hypercubeuJi u<1 (i 51, . . . ,N). We use the
same definition of the fieldslm5J•jm/AN as on the hyper-
sphere, even though the weight vectorJ in the hypercube is
not normalized toN. This means that the fields no longe
depend only on the angle betweenJ andjm but also on the
length ofJ. In the following, we will always assume that th
potential V(l) is a convex function so thatE(J) has a
unique minimum in the hypercube.

Following standard replica techniques@9#, we calculate
the free energyf (b)
2b f ~b!5 Extr
q0qq̂0q̂

H q0q̂01
1

2
qq̂1E Dz lnF E

21

11

dJ expS 2
2q̂01q̂

2
J21zJAq̂D G

1aE Dz lnF E dl

A2p~q02q!
expS 2bV~l!2

1

2

~l2Aqz!2

q02q D G J , ~1!
where, as usual,Dz5dz exp@2z2/2#/A2p. The order pa-
rametersq0 andq are defined as

q05
1

N (
j

Jj
aJj

a , q5
1

N (
j

Jj
aJj

b , ~2!

with q̂0 and q̂ as their conjugate variables. The labelsa and
b refer to different replicas, and replica symmetry has be
assumed in deriving Eq.~1!. This assumption is justified
since E(J) is supposed to have a single minimum in t
hypercube.

To obtain the lowest possible value of the energy, we
b→1`. Thenq→q0 and q̂ as well as 2q̂01q̂ tend to in-
finity. We therefore introduce three new parameters to
placeq, q̂0 , andq̂:
n

t

-

x5b~q02q!, y5~2q̂01q̂!~q02q!, s5
Aq̂

2q̂01q̂
.

~3!

The lowest energye0 is then obtained as

e052 Extr
q0xys

H y

2x Fq02ys2

2E Dz Min
JP@21,11#

~J222zsJ!G
2aE DzMin FV~l!1

~l2Aq0z!2

2x G J ~4!

l



de

A

cu

nt

a

.

bil
om
l
y
-
te

he

ot

the

at

y
e

0 at

he
%
gs
an
es

C
As

call
ved

ch

a

h
er-

is
of
av-
ar

lgo-

u-

e

,
f a
ame
us

is
per-
both

m-
pa-
as

-
cep-
se

s
T
-
ow
be

2380 PRE 58M. BOUTEN, L. REIMERS, AND B. Van ROMPAEY
The extremum yields four saddle-point equations which
termine the four order parametersq0 , x, y, ands as func-
tions ofa. These equations are written down in Appendix
In comparison with the corresponding minimization ofE(J)
on the hypersphereJ25N, where only the parameterx ap-
pears, we need three extra order parameters in the hyper
The meaning ofq0N follows from Eq.~2! as the norm of the
lowest-energy vectorJ. The meaning ofy and s becomes
clear when we write down the distribution of the compone
of J:

P~J!5
1

A2ps
e2~J2/2s2!u@12uJu#

1HF1

s
G ~d@J21#1d@J11# ! ~5!

where, as usual,H@u#5*u
`Dz5Erfc@u/&#/2. The compo-

nents ofJ that have a magnitude smaller than 1 follow
Gaussian distribution with variances2. The two tails of this
Gaussian are compressed into twod peaks at21 and11.
The saddle-point equation~A1! shows that 12y represents
the fraction of components ofJ with magnitude equal to 1
Note that the form of the distributionP(J) changes witha
through its dependence on the parameters. This entails that
the fraction of components greater than a fixed valueJ0 ,
given by*J0

` P(J)dJ5H@J0 /s#, also varies witha.

We now specialize to the perceptron of maximum sta
ity in the hypercube. Results for the MSC are obtained fr
the general expression~4! by choosing the potentia
V(l)5(Kc2l)2u(Kc2l), and assigning the value infinit
to the order parameterx @6,9#. The four saddle-point equa
tions now determine the three remaining order parame
q0 , s, andy, as well as the stability parameterKc , as func-
tions ofa. Figure 1 shows the solution forKc(a) andy(a).
To obtain a meaningful comparison with the value of t
maximum stabilitiesK(a) for the MSN andKb(a) for the
MSB, we plot the ‘‘normalized’’ valueKc(a)/Aq0, correct-
ing for the shorter length of the MSC weight vector. N

FIG. 1. Maximum stabilityK obtained for three different type
of constraints on the weights: binary, spherical, and hypercube.
rescaled hypercube stabilityKc(a)/Aq0 is shown to obtain a mean
ingful comparison with the other cases. The dotted curve sh
y(a), the fraction of weights in the maximally stable hypercu
vector that have magnitude smaller than 1.
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surprisingly, whena→2, Kc /Aq0 goes to zero likeK(a) for
the MSN. More interesting, however, is the behavior at
other enda→0, whereKc /Aq0 is found to coincide with
Kb(a). The overall impression emerging from Fig. 1 is th
the MSC interpolates smoothly between the MSB~at a50!
and the MSN~at a52!. This impression is substantiated b
looking aty(a), the fraction of MSC components that hav
a magnitude smaller than 1. This fraction increases from
a50—indicating that the MSC ata50 is indeed a binary
vector—up to the value 1 ata52, indicating thatP(J) trans-
forms into the pure Gaussian distribution of the MSN. At t
saturation limita50.83 where the MSB ceases to exist, 43
of all MSC weights are still binary. These general findin
strengthen our confidence in the MSC weight vector as
excellent precursor for the MSB, especially at small valu
of a, but gradually declining in quality whena increases.

III. PRECURSORS FOR THE BINARY PERCEPTRON

In this section we estimate the significance of the MS
and other hypercube vectors as precursors of the MSB.
preparation for the subsequent discussion, we first re
some general characteristics of the MSB which are deri
from replica calculations in the thermodynamic limit@2,10#.
Unlike the continuous MSN and MSC weight vectors whi
are unique vectors for any value ofa, different binary vec-
tors exist with the same maximum valueKb(a) of the sta-
bility. The different vectors of the MSB ensemble have
typical mutual overlapQ which decreases from 1 ata50
down to 0.56 ata50.83. Since it is impossible to distinguis
the individual vectors, all theoretical results relate to av
ages over this ensemble of MSB vectors. The implication
that any algorithm for constructing the MSB on the basis
theoretical arguments will at best be directed toward the
erage^B& of this ensemble of vectors, not to a particul
individual vector B. The lack of uniqueness of the MSB
weights constitutes a major obstacle to any theoretical a
rithm.

An obvious measure for gauging the quality of a contin
ous precursor vectorJ is given by the proportion of binary
weightsJ is able to predict correctly. This number can b
derived from the joint probability distributionP(B,J) of cor-
responding components in the weight vectorsB and J. To
calculateP(B,J), we follow the approach of Wong, Rau
and Sherrington@11#, and consider the combined system o
binary and a continuous perceptron, both trained by the s
random input vectors. The weight vector of the continuo
perceptron is defined by an energy functionE(J) in the hy-
percube, while the weight vector of the binary perceptron
the MSB. Besides the order parameters of the separate
ceptrons, two new order parameters appear that relate to
perceptrons: the overlapr of the continuous vectorJ with the
averagê B& of the binary vectors, and its conjugate para
eter r̂ . The saddle-point equations for these new order
rameters are written down in Appendix B. There, as well
in all subsequent equations,r andr̂ generally appear in com
bination with an order parameter from each separate per
tron. It is expedient to introduce, a new notations for the
combinations:
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g5
r

AqQ
, ĝ5

r̂

Aq̂Q̂

. ~6!

The parametersq and q̂ are order parameters of the co
tinuous perceptronJ encountered in Sec. II. The parameterQ
is the mutual overlap of two binary vectors in the MSB e
semble discussed above, andQ̂ is its conjugate@10#. The
new parametersg andĝ have some further advantage overr

and r̂ . The denominatorAqQ corrects for the length of both
J and^B&, so thatg equals the cosine of the angle betweenJ
and^B&. Also, while bothr̂ andq̂ tend to infinity,ĝ retains a
finite value. Lettingĝ increase and tend to its maximu
value 1 movesJ closer to^B&, so g also tends to its maxi-
mum value. The parameterĝ will play an important role in
the following discussion.

The probability distributionP(B,J) can be expressed as

P~B,J!5E E D ĝ~u,v !
1

2
@11tanh~BAQ̂v !#

3

expS 2
2q̂01q̂

2
~J2su!2D

E
21

11

d j expS 2
2q̂01q̂

2
~ j 2sv !2D . ~7!

We recall that BP$21,11% and JP@21,11#. The
shorthand notationD ĝ(u,v) stands for the two-dimensiona
Gaussian measure with correlationĝ

D ĝ~u,v !5
dudv

2pA12ĝ2

3expS 2
1

2~12ĝ2!
[u21v222ĝuv] D . ~8!

The integrand in Eq.~7! is the product of two factors
each factor relating to one of the two perceptrons only. T
first factor relates to the binary vectorB via the order param-
eter Q̂ of the MSB. The second factor relates to the hyp
cube vectorJ via the order parameters encountered in Sec
II. Recall that the other combination of parameters 2q̂01q̂
appearing in Eq.~7! tends to infinity. The second factor i
Eq. ~7! therefore has the character of ad function.

Due to the symmetryP(B,J)5P(2B,2J), we can con-
fine the following argument to the valueB511 only. The
fraction of positive components ofJ that correctly predict the
binary componentB511 is given by

f ~a!5

E
0

`

P~1,J!dJ

E
0

`

P~J!dJ

. ~9!
-

e

-

We have explicitly indicated thatf depends ona which en-
ters via the order parameters inP(B,J). Straightforward cal-
culation of the integral yields

f ~a!5
1

2
1E

2`

1`

Du tanh~AQ̂u!HS 2ĝu

A12ĝ2
D . ~10!

The whole dependence on the choice of potentialV(l) in
the cost function enters via the parameterĝ. It is easy to see
that the value of the integral grows withĝ. Hence a sharp
upper bound for the fractionf (a) can be obtained by taking
the limit ĝ→1:

f ~a!<
1

2
1E

0

`

Du tanh~AQ̂u!. ~11!

This bound only depends on the conjugate parameterQ̂ of
the binary perceptron, and consequently cannot be surpa
by any choice of potentialV(l) in the hypercube. Becaus
the value ofQ̂ is finite for all a.0, the upper bound is les
than 1, and decreases steadily with growinga. The finite
value of Q̂ is connected with the lack of uniqueness of t
MSB weights, as reflected by the mutual overlapQ being
smaller than 1. Since for a perceptron with a spherical c
straint, exactly the same expression~10! was obtained in Ref.
@1#, the upper bound~11! is valid for any potential on the
hypersphere as well.

Figure 2 shows the fraction~10! of binary components of
the MSB, correctly predicted by clipping all weights of th
MSC. For comparison, we also show the corresponding fr
tion predicted by clipping the weights of the MSN@2# as well
as the upper bound~11!. As expected, for small values ofa,
the MSC achieves a substantial improvement, and
proaches the upper bound very closely. At larger values oa,
the improvement is smaller and the separation from the
per bound remains considerable. In an attempt to bridge
gap, we have selected a different precursor vector in
hypercube using the potential

FIG. 2. Fraction of binary weights in the MSB that are correc
predicted by clipping all continuous weights of the MSN, the MS
and the quasioptimal hypercube precursorVqo. The dotted line
shows the upper bound~11!.
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Vqo~l!5H 1/~l2Kb! when l.Kb

1` when l,Kb
. ~12!

This simple potential, which we call the ‘‘quasioptimal p
tential,’’ was introduced in Ref.@1# as a substitute for the
optimal potential on the hypersphere. The strong repuls
away from the boundaries of the Gardner volume@12# with
stability Kb , pushes the minimizing vector toward its cent
of mass@7#. The center of mass would be the optimal pr
cursor, given that the sole information available about
position of the MSB is that it lies on the boundary of th
Gardner volume with stabilityKb @13#. The resulting value
of f (a) is also shown in Fig. 2. It achieves a remarkab
large improvement at large values ofa, and closely ap-
proaches the upper bound~11! over the whole interval.

Numerical simulations confirm the superiority of the h
percube precursor that minimizesE(J) with the quasioptimal
potential~12!. Figure 3 shows the minimum stabilityK(a)
of the binary vector obtained by clipping all weights of th
hypercube precursor for a perceptron with 50 input neuro
For comparison, we also show the minimum stability o
tained by clipping three other precursors: the MSC,
MSN, and the spherical precursor that minimizes the c
function E(J) with potential ~12!. The quasioptimal hyper
cube precursor stands out well above the results of the o
precursors over the whole range ofa. It narrows the gap
between the MSN and the theoretical curveKb(a) by more
than half. The outcome from the other two precursors is
termediate. As expected, the MSC result lies close to
quasioptimal hypercube precursor at smalla, but rapidly de-
teriorates whena increases to coincide with the MSN resu
at largea. The outcome from the quasioptimal spherical p
cursor coincides with the MSN result at smalla, and moves
only slightly above the MSN at largea. These simulations
confirm the superiority of the quasioptimal hypercube p
cursor, stressing that both the hypercube constraint and
quasioptimal potential are essential for excellent perf
mance.

FIG. 3. Minimum pattern stabilityK for a perceptron with
N550 as determined by numerical simulations. The binary weig
are obtained through full clipping from four different precursors.
small a, the results from the MSN coincide with those from th
spherical quasioptimal precursor and, at largea, with the MSC
results.
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IV. RELIABLE COMPONENTS OF THE HYPERCUBE
PRECURSORS

Despite this large improvement, even the best of all p
sible precursors in the hypercube—represented by the u
bound~11!—fails to predict about 16% of the MSB compo
nents correctly neara50.83. A further learning stage there
fore will always be necessary in which the incorrect comp
nents have to be identified and corrected. Again we sus
the weak components of the hypercube vectorJ to be the
dubious ones, while we expect the stronger components t
more reliable. To check this expectation, we focus on
components ofJ that are greater than a threshold val
J0.0. The fraction of these components that, on weight c
ping, correctly predict the corresponding component ofB is
given by

f J0
~a!5

E
J0

`

P~1,J!dJ

E
J0

`

P~J!dJ

. ~13!

Straightforward calculation of the integral yields

f J0
~a!5

1

2
1

1

2HS J0

s
D E Du tanh~AQ̂u!HS J0

s
2ĝu

A12ĝ2
D ,

~14!

which, for J050, returns to expression~10! for f (a). The
value of the integral again grows steadily withĝ, so that an
upper bound forf J0

(a) can be obtained by taking the lim

ĝ→1:

f J0
~a!<

1

2
1

1

2HS J0

s D E
J0 /s

`

Du tanh~AQ̂u!. ~15!

At this stage, it is important to recall that the compone
of the hypercube precursor of magnitude greater thanJ0
form a fraction 2H@J0 /s# of the total number of compo
nents. For a fixed value ofJ0 , this fraction changes witha
because the order parameters changes witha. In a like man-
ner, this fraction also changes for different choices of
potentialV(l). If we want to compare the value off J0

(a)
for different precursors, it would therefore not be reasona
to fix the value ofJ0 , because different numbers of comp
nents would be compared for different precursors. Fo
meaningful comparison, in which the same number of p
cursor components are examined, we have to fix the valu
the ratioJ0 /s.

In Fig. 4, we plot the fractionf J0
(a) for three values of

J0 /s, corresponding to the 40%, 60% and 80% strong
components of the MSN, the MSC, and the quasioptim
hypercube precursor. For each value ofJ0 /s, the upper
bound~15! is also shown. It forms a standard against whi
the performance of the different precursors can be measu
The figure demonstrates the manifest superiority of the

ts
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percube precursor with the quasioptimal potential. Compa
to the MSN result, there is a substantial improvement for
values ofa. For smalla, this is completely due to the hy
percube constraint, since it is also obtained for the M
precursor. At largera, part of the improvement comes from
the hypercube constraint, but the major part comes from
quasioptimal potential. The numerical value off J0

(a) indi-
cates that the 40% strongest components of the quasiop
hypercube precursor are highly reliable predictors of
MSB weights. The probability of making a wrong predictio
is small when the 60% strongest components are clippe
increases further for the next 20% components. Compar
with Fig. 2, however, indicates that the greatest concen
tion of incorrect predictions occurs among the 20% weak
components ofJ.

V. NUMERICAL SIMULATIONS

So far, we have focused on thenumberof binary weights
that are correctly predicted by clipping various fractions
components of the continuous precursors. For practical
poses, a more appropriate quality measure of the precurs
the maximum possible value of thestability that can be at-
tained, after clipping various fractions of strong componen
by a perfect learning procedure for the remaining bin
weights. As it is difficult to determine this maximum stab
ity analytically, we rely on numerical simulations to acqui
the relevant information. Clearly, determining the maximu
possible value of the stability precludes any approximat
in the determination of the remaining binary weights. Th
implies that the full enumeration method@14,15# has to be
applied to obtain these weights.

The numerical simulations were carried out using the f
lowing simple ‘‘learning algorithm.’’ We start by minimiz-
ing the cost functionE(J) in the hypercube to determine th
quasioptimal precursorJ. This is a fast and straightforwar
calculation, becauseE(J) has a single minimum in the hy
percube. In the second step, we clip a fraction of the str
components ofJ, assuming that they can be trusted to p
vide an excellent prediction for the MSB weights. The p
mary objective of our simulations is to verify this assum

FIG. 4. Fraction of binary weights in the MSB that are correc
predicted by clipping the strongest 40%~top!, 60% ~middle!, or
80% ~bottom! components of the MSN, the MSC, or the quasiop
mal hypercube precursorVqo. The dotted curve shows the upp
bound~15!.
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tion. In the last step, we determine the remaining weights
the full enumeration method. Since enumerating more t
25 weights becomes time consuming, the number of weig
left over after clipping may not exceed 25.

In the hypercube precursorJ, many components hav
magnitude 1, especially whena is small. In cases when mor
components have magnitude 1 than we intend to clip,
question arises as to how the strongest ones are to be
tified. We tackle this problem by adding to the cost functi
E(J) a suitable ‘‘perturbation’’ which partly lifts the degen
eracy of the components of magnitude 1. An obvious cho
of perturbation is a termrJ2 with r.0. This term clearly
exerts a force that pulls the minimum of the cost functi
toward the originJ50. Fine tuningr makes it possible to
reduce the fraction 12y of magnitude 1 components to
prescribed value. The required strength ofr can simply be
calculated by adding the termrJ2 to the cost functionE(J).
This produces an additional termrq0 in expression~4! of the
lowest energye0 . Since this term depends solely on the o
der parameterq0 , only the saddle-point equation~A4! will
be altered, an extra term22xr being added to the left han
side of this equation. For givena, we are now free to choos
the fraction 12y of components that have magnitude
~smaller than the value obtained whenr50!. The four
saddle-point equations then determine the parametersq0 , s,
x, andr.

It is to be noted that the additonal termrJ2 does not affect
the convexity of the cost function~when r.0!, so that a
unique minimum continues to exist in the hypercube.

Figures 5 and 6 show results from our numerical simu
tions. The minimum pattern stabilityK is plotted as a func-
tion of a for the best binary vector obtained from the qu
sioptimal precursor in the hypercube. Each data po
represents the average over 200 samples. The input ve
used in the simulation are random Gaussian patterns@16#.
Figure 5 shows results for the relatively small systemN
540. Figure 5~a! shows the effect of clipping different frac
tions of the quasioptimal hypercube precursor. When o
16, i.e., 40%, of the precursor components are clipped,
theoretical curves in Fig. 4 predict that all clipped comp
nents are very likely to give the correct binary weight. T
simulations beautifully confirm this prediction, the numeric
value of the stability lying even above the theoretical cur
Kb(a) for all values ofa. When 24, i.e., 60%, of the com
ponents are clipped, we deduce from Fig. 4 that, at la
values ofa, at least one of the clipped components is like
to produce an incorrect binary weight. The numerical sim
lations continue to display excellent agreement with the t
oretical curve for all values ofa, but the 60% clipping re-
sults lie very slightly below the 40% clipping points at larg
values ofa. Figure 5~b! compares results from two differen
precursors: the quasioptimal hypercube and the MSN pre
sor. In both cases, the strongest 60% components w
clipped. Although a doubling of the number of incorrect b
nary weights is to be expected for the MSN, the numeri
results continue to agree nicely withKb(a) at smalla, but
the fit deteriorates slightly for large values ofa.

Figure 6 shows results for larger networksN575 and
100. In these cases, a much larger number of precursor c
ponents have to be clipped because our computational c
bilities restrict enumeration to 25 components. This enta
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that many more clipped components will predict an incorr
binary weight. For the quasioptimal hypercube precursor,
number of incorrect predictions, as deduced from Fig. 4,
be estimated as equal to three forN575 and equal to six for
N5100 at largea. The interesting point now is to investiga
how these many incorrect weights effect the value of
minimum stabilityK. Surprisingly, forN575 with 50 com-
ponents of the hypercube precursor clipped, the numer
value obtained from the simulations still follows nicely th
theoretical curveKb(a) over the whole range ofa. For
N5100 with 75 clipped components, the agreement w
Kb(a) remains excellent for smalla and the deviation a
large values ofa is small. This unexpected result indicat
that the various incorrect weights generated by clipping
hypercube precursor do not destroy the high stability, as t
might have done, but only affect a small reduction of
value. Apparently, the value of these particular weights is
crucial for obtaining a large value for the minimum stabilit
This is a very gratifying result, because it shows that
hypercube precursor performs even better than could be
pected from Fig. 4. For comparison, we again show the c
responding results for the MSN precursor in which case
even larger number of incorrect binary weights are predic
The MSN, however, also performs splendidly at smalla, but
the results become markedly less good at large values oa.

FIG. 5. Minimum pattern stabilityK for a perceptron with
N540. ~a! shows the value ofK when 40% or 60% of the quasiop
timal hypercube precursor components are clipped.~b! compares
the MSN and the quasioptimal hypercube precursor when the s
gest 60% components are clipped. The full line shows the theo
ical curveKb(a).
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VI. DISCUSSION

In this paper, we have examined continuous-weight v
tors in the hypercube as precursors for learning the bin
weigths of the MSB. We have demonstrated that the vectoJ
that minimizes the cost functionE(J)5(mV(lm) with the
potential ~12! is nearly optimal in its ability to predict the
largest number of MSB weights correctly. We have show
in addition, that the strongest components ofJ are highly
reliable predictors of the binary weights while the major
of uncertain predictors are to be found among the weak
components ofJ. The substantial increase in predictiv
power of our new precursor, in comparison to previous p
cursors like the MSN, is achieved through both the hyp
cube constraint and the quasioptimal potential.

The analytical results as well as numerical simulatio
indicate that the hypercube precursor can play a very hel
role in reducing the overall difficulty of the learning proble
for the binary perceptron. For small values ofa, at least 60%
of the binary weights can be reliably obtained from the p
cursor, while for larger values ofa, still 40% of the binary
weights are correctly predicted. This replaces the origi
learning problem by a simpler one of smaller size. Our n
merical simulations forN575 and 100 moreover indicat

n-
t-

FIG. 6. Minimum pattern stabilityK for a perceptron with
N575 ~a! andN5100 ~b!. Both figures compare the MSN and th
quasioptimal hypercube precursor. Since only 25 components
enumerated, a considerable number of incorrect clipped weights
expected. The agreement with the theoretical curveKb(a) never-
theless remains very satisfactory. The full line shows the theore
curveKb(a).
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that even considerably larger fractions of the hypercube
cursor components may be clipped with only a tiny reduct
in the value of the minimum stability as a result. This n
merical finding suggests that the hypercube precursor
rectly predicts all the binary weights that are essential
obtaining a high value of the minimum stability, and th
those components where the precursor fails to predict
correct sign are not crucial for a high stability. In our sim
lations, we have used the full enumeration method to le
the weights of the reduced problem, restricting for compu
tional reasons the number of weights to 25. More intellig
methods, like branch and bound@17# could be applied to
enlarge this number up to 40.

The hypercube precursor is likely to play a similar sim
plifying role in other learning problems with discre
weights. We are currently exploring its usefulness in
storage problem for the diluted binary perceptron@18# as
well as in supervised learning with a binary teacher@19#.
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APPENDIX A

The extremum ofe0 in Eq. ~4! leads to the following four
saddle-point equations for the parametersy, s, x, andq0 :

y5122HS 1

sD , ~A1!

q05s2y112y2A2

p
se21/2s2

, ~A2!

s2y25aE Dt @l0~Aq0t,x!2Aq0t#2, ~A3!

y52
a

Aq0
E tDt @l0~Aq0t,x!2Aq0t#. ~A4!
v.
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n
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r
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.

The first two equations are independent of the choice
the potentialV(l). The last two equations depend onV(l)
via the functionl0(z,x) defined as

l0~z,x!5Arg Min
l

FV~l!1
~l2z!2

2x G . ~A5!

APPENDIX B

For the combined system of a binary and a continuo
perceptron considered in Sec. III, the following equations
obtained for the overlapr and its conjugater̂ :

r 5E E D ĝ~u,v !tanh@AQ̂u#Jmin~sv !, ~B1!

r̂ 5aE E Dg~s,t!
1

A2p~12Q!

expS 2
~Kb2AQs!2

2~12Q!
D

HFKb2AQs

A12Q
G

3S l0~Aq0t,x!2Aq0t

q02q D , ~B2!

whereg andĝ are defined in Eq.~6!, D ĝ(u,v) is the Gauss-
ian measure~8!, andJmin(z) is defined by

Jmin~z!5Arg Min
JP@21,11#

~J222zJ!. ~B3!

Equation~B1! simply expresses thatr is the average value
^BJ&5(B*dJP(B,J)BJ of the product of corresponding
components ofJ and B. It does not explicitly depend on
V(l). The form of Eq.~B2!, on the other hand, does depen
on the potentialV(l) via the functionl0(z,x) defined in Eq.
~A5!. When q→q0 it is clear thatr̂ tends to infinity. But

ĝ5 r̂ /Aq̂Q̂ is finite, sinceAq̂(q02q) remains finite.
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